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Abstract-This paper deals with the inward solidification of liquid in an annular space which is initially not 
at the fusion temperature. The outer cylindrical surface is maintained at a subfreezing temperature while the 
inner cylindrical boundary is assumed to be either insulated or maintained at constant temperature. New 
perturbation solutions are obtained for the temperature distribution and the interface motion. The 
perturbation parameter E = C,(Tf - T,)/L is the ratio of the sensible heat ofthe solid-phase to the latent heat 
offusion. The non-uniformity of the long-time scale solutions is treated by constructing inner expansions in 
the short-time scale. The two solutions are matched using asymptotic theory. 

The solutions for the insulated case do not depart markedly, except on the short time scale. from the 
corresponding solutions for liquids which are initially at the fusion temperature T,. In contrast, the solutions 
for the isothermal inner boundary depart substantially from those with an initial temperature equal to T[, 
This is true even if the sensible heat is small compared to the latent heat of fusion. Similarly, curvature plays a 
minor role in the interface motion for the insulated case while its effect is dramatic in the isothermal case. 

NOMENCLATURE Subscripts 

0, I,?. zero, first and second-order perturbation; 

I liquid ; 
s, solid. 

4 radius of outer cylinder; 

4 integration constant; 

b, radius of inner cylinder; 

4 integration constant; 

C, specific heat ; 
K thermal conductivity ; 
L, latent heat of fusion ; 
‘1, perturbation order; 
r, radial coordinate ; 

ri, interface location ; 
4 long time variable ; 
3, short time variable ; 
T temperature ; 

r,, temperature at boundary ; 

Tf, fusion temperature ; 
T, initial temperature of the liquid phase. 

Greek symbols 

Superscripts 

inner expansion. 

1. INTRODUCTION 

thermal diffusivity. ratio of solid to 
liquid-phase thermal diffusivity ; 
ratio of inner to outer cylinder radius; 
perturbation parameter ; 
dimensionless radial coordinate in the 
liquid phase; 

dimensionless solid-phase temperature ; 
dimensionless radial coordinate in the 
solid-phase ; 
density ; 
dimensionless interface location ; 
dimensionless long time ; 

A LARGE number of technically important problems 
involve solutions of the equations describing diffusion 
of heat, mass, or some other scalar quantity subject to 
boundaries that are neither fixed in space nor known CI 
priori. Examples of such problems are found in 
melting, freezing, casting, welding, ablation and frost 
formation. Appropriately, much work has been done 
in treating these free boundary multiphase problems. 
Boley [I], Bankoff [2], Muehlbauer and Sunderland 
[3], Rubinstein [4] and Fox [S] cite many references in 
their comprehensive literature surveys. 

The inherent difficulty in the analysis of such 
problems is the nonlinear nature of the interface 
boundary condition which precludes superposition 
and necessitates the use of special solution techniques. 
Another difficulty arises in finite domain problems 
where self-similar solutions cannot be constructed. 
Because of these two mathematical difficulties, only the 
simplest type of free boundary problem has been 
considered. Neumann’s [6] solution to the problems of 
freezing in a semi-infinite region, which was presented 
in the 1860’s remains one of few exact solutions 

dimensionless liquid-phase temperature; available. 
dimensionless initial liquid-phase Understandably, most models used in the analysis of 

temperature. multiphase free boundary problems are highly sim- 
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plified, often limited to one-dimensional systems with 
simple geometries and boundary conditions which 
lend themselves to analytical treatment and experi- 
mental simulation. Two common simplifications are 
(i) the assumption of quasi-steady behavior and (ii) the 
restriction to an initial temperature which is equal to 

the fusion temperature. Unfortunately, while this last 
limitation simplifies the mathematical complexity, it 
fails to represent problems of practical interest. Re- 
cently a number of investigators have focused on non- 
similar free boundary problems in which the phase 
ahead of the advancing interface is at the fusion 
temperature or surface concentration. Riley, Smith 

and Poots [7], Tao [S], and Pedroso and Domoto [9] 
have examined the inward solidification of cylinders 

and spheres, Jiji [lo] and Shih and Tsay [i l] the 
outward growth and decay of a solid phase on a 
cylindrical surface, Duda and Vrentas [lt, 131, the 
growth and dissolution of a spherical bubble and Cho 

and Sunderland [14], Shih and Chou [lS], and 
Theofanoas and Lim [16] the solidification of a 
saturated liquid outside a sphere. 

For free boundary problems in finite domains which 
are initially at the fusion temperature it is possible to 
introduce a single coordinate transformation in which 
the moving interface is immobilized by scaling the 

independent distance coordinate by the instantaneous 
interface location. This transformation shifts the non- 
linearity from the interface boundary conditions to the 
governing differential equation for the solid phase 
which in this case remains a partial differential equa- 
tion since a similarity solution does not exist. Duda 
and Vrentas [12. 171 applied this procedure for both 

cylinders and spheres where one of the phases is at the 
fusion temperature or interface concentration. For the 
more general case where both phases are of finite 
extent with the initial temperature not equal to the 
fusion temperature, a double coordinate transfor- 
mation is required since a different instantaneous 

length is necessary for each region. This double 
transformation technique is developed in Weinbaum 
and Jiji [It 81 and applied to the solution of freezing in 

finite slabs. 
This paper presents perturbation solutions for the 

problem of inward solidification in an annulus which is 
initially not at the fusion temperature The outside 
radius of the annulus is maintained at a sub-freezing 
temperature while the inside radius is either insulated 
or maintained at constant temperature above the 
fusion level. 

A double transformation is used to immobilize the 
interface and the resulting equations are solved by the 
method of singular perturbation. The perturbation 
parameter I: used in the solution is defined as I: = C,( T, 
- ‘Q/L where C, is the specific heat of the solid phase. 
T, the fusion temperature, r, the temperature of the 
outer boundary of the annulus and L is the latent heat 
of fusion, Thus i: is the ratio of the sensible heat of the 
solid phase to the latent heat of fusion. Typical values 
of CJL per “C for representative materials are 0.006 for 
ice, 0.00163 for iron and 0.005 for lead. Since per- 

turbation solutions are valid for i: < 1, substantially 
high values of (7’(- T,) can be tolerated without 
compromising the accuracy of the solution. 

The ~rturbation solution presented here is moti- 
vated by the nature of quasi-steady and quasi- 
stationary solutions to free boundary problems in 
finite domains previously obtained by other in- 
vestigators. In the quasi-steady approximation the 
unsteady term is omitted in the differential equation 
and the gradient at the interface is determined by 
solving the steady state diffusion equation with a 

stationary interface. Representative solutions are the 
dissolution of a gas bubble obtained by Bankolf [2] 
and Rosner [ 191. In general, quasi-steady solutions are 
not capable of satisfying initial conditions. In the 
quasi-stationary approximation the unsteady term IS 
retained in the diffusion equation and the latter solved 
assuming that the interface is stationary. Duda and 
Vrentas [17] have shown that the quasi-stationary 
approximation is the leading term of a series solution 
based on regular perturbation procedure for the finite 

region problems with only one non-uniform phase. in 
retaining the unsteady term in the di~usioil equation. 
the quasi-stationary approximation is capable of satis- 
fying an initial temperature or concentration profile. 
However, the solution in general will not be valid fat 
all time if the temperature ahead of the advancing 
interface is not uniform and is changing due to the 
interface motion. 

The properties of the quasi-steady and quasi- 

stationary approximations just described suggest that 
it might be possible to construct a composite series 
solution in the perturbation parameter f: which is 
uniformly valid for all time as a matched asymptotic 
expansion. In such an expansion the quasi-steady and 
quasi-stationary approximation serve as the lowest 
order generating functions in a scheme of successive 
asymptotic approximations. One anticipates that the 

composite solution has a boundary-layer-like struc- 
ture, that is to say, a long-time behavior in which the 
interface motion is a slowly varying function of time 
and the temperature or concentration profiles are close 
to an instantaneous quasi-steady state distribution in 
some asymptotic sense, and a short time behavior in 
which the interface motion is rapidly varying and the 
temperature or concentration profiles are also rapidly 
changing so as to satisfy appropriate initiai conditions. 
The reason for introducing two separate time scales in 
the analysis is that different mathematical simplifi- 
cations obtain on the short and long time scales. On 
the short time scale one is able to simplify the interface 
boundary condition and satisfy the initial conditions 
whereas on the long-time scale one is able to neglect 
the initial conditions and simplify the governing 
differential equations but satisfy the nonlinear in- 
terface conditions. Two separate solutions of different 
character emerge in the form of infinite series in 
fractional half powers of <: which when matched term 
by term in a region of overlapping validity provide a 
composite solution which is uniformly valid for all 

time. 
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2. FORMULATION 

The two problems considered are shown in Fig. 1. 
The liquid in the annular space is initially at tempera- 
ture ?;- which is above the freezing temperature T,-. At 
time t = 0 the outer tube boundary at r = a is suddenly 
maintained at a sub-freezing temperature T,. In the 
first problem the inner tube boundary at r = h is 
assumed to be perfectly insulated while in the second 
problem this boundary is maintained at temperature 
Y&. These two boundary-value problems are distin- 
guished only by the boundary condition at r = b but 
they exhibit a markedly different behavior as time 
progresses. When the inner tube is insulated the entire 
liquid in the annular space will eventually solidify. On 
the other hand when the inner tube is maintained at a 
constant temperature, a steady state is reached in 
which only a portion of the liquid solidifies. 

FIG. 1. Con~gu~tion and coordinates. 

To simplify the problem, the fluid properties in each 
phase will be assumed constant. Volumetric expansion 
or contraction due to phase transformation will be 
neglected. Free convection currents in the liquid phase 
will be ignored. Based on these simpli~cations the 
energy equation in the solid and liquid phases become: 

and 

where the subscripts s and I denote solid and liquid 
phase, respectively, and a is the thermal diffusivity. The 
boundary conditions for the two problems considered 
are 

The initial conditions on the liquid temperature 7; and 

the interface location ri(t) are 

?;(r, 0) = 7;, 

r,(O) = a. 

The energy balance at the interface gives 

where p is the mass density. 
To non-dimensionalize the governing equations and 

immob~l~e the boundaries, the following dimension- 
less quantities are defined: 

rl _ r;(t)-r 
r,(r)-h 

(1 --I <=__------ 
a--r,(r) 

Two dimensionless distance coordinates q and 2 are 
required to immobilize the interface location and the 
inner tube boundary. This is an important distinction 
between the present analysis and the theory in [IZ], 
[ 131 and [ 171 where the region ahead oft he advancing 
interface is at the fusion temperature. The reference 
time a*,&, is the characteristic diffusion time for the 
solid phase, whereas the characteristic time used in the 
definition of the dimensionless time z is n’/cr*,>. This 
latter time is long compared to the solid diffusion time 
if c: < 1 and represents the characteristic time for the 
interface motion to occur. H, C$ and (T are the dimen- 
sionless temperatures in the solid and liquid phases 
and dimensionfess interface location, respectively. 

Using the dimensionless quantities defined in (1 f, 
the governing equations and boundary conditions 
become : 

(‘24, (I -a--/l) 
-T- ?ij [(l-+(i--O-p)q] :; 

=xc;[(l-a-P)]~~-(l-o-_P)(l-9)~~ ) 
/ 

O<q<l, (3) 

H(O,T) = - 1, (4) 

@(I, T) = 0, (5) 

#c&T.) = 0, (6) 

Ml. 7) 
~ = 0, 

dq 
(insulated case) 0) 
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Or 

~$(i, 5) = &. (isothermalcase) 

cb(% 0) = 6,. 

o(0) = 0. 

(7b) 

(8) 

(9) 

Examination of equations (2) (10) shows that the 
free boundary problem has been transformed to a 
stationary problem and the nonlinearity due to the 
unknown interface motion r,(t) is shifted from the 
interface boundary conditions to the differential equa- 
tions (2) and (3). Furthermore. the problem is gover- 
ned by four parameters x. /I’, 1: and cJ~. The thermal 
conductivity ratio KJK, is eliminated as a parameter 
by including it in the definition of the liquid tempera- 
ture (6. The thermal diffusivity ratio c( = aJrr is 
approximately equal to unity for most materials. The 
geometry parameter /j = h/a is a measure of the 
curvature of the annular space. The special case of \j 
= 0 represents solidi~cation in a tube. For this case. 
only the insulated inner boundary problem is physi- 
cally possible. 

3. PERTURBATION SOLUTIONS 

We seek approximate solutions to equations (2) and 
(3) subject to boundary and initial conditions 
(4))( IO), in the form of an asymptotic expansion valid 
for i: < 1. A cursory examination of equations (2) and 
(3) shows that a regular perturbation expansion of the 
form 

\ 
ri(r; r:) - 2 1:” 2a,,(s), (13) 

n = 0 

is singular as T ---f 0. The time derivative termscontain- 
ing ?O,/?T and ?&/?s in the lowest order differential 
equation for (2) and (3) are lost and initial condition 
(8) cannot be satisfied. The nonuniformity of the 
expansions (I 1 k( 13) in the domain near T = 0 wiIl be 
corrected by constructing inner expansions for 0, d, 
and D valid on a time scale where r < I. These inner 
expansions will satisfy the initial conditions (8) and (9) 
and match in a region of overlapping validity with the 
series solutions (It )- (13) which is the large time or 
outer expansion. 

The zero. first and second order outer expansions 
are constructed by substituting ( I 1 I-( 13) into (2)--i 10) 
and equating terms of identical powers of c. The 
governing equations and boundary conditions will 
thus be formulated and solutions for the two cases 
under consideration will be presented. 

(i) Zero-order expu~~ior~. The zero-order solid and 
liquid phase equations are 

Pfl,, ? 
(l--n”<),--a,,$=4 o<,‘< I. (14) 

(5 
and 

32 ^ 

~(l-s)il-no)+P,~]~~~--il-(;*-/i)~rO, 

Cl1 

o<q< I. (15) 

The boundary conditions are 

rr,,ro. T) = - 1. (16) 

(I,, ( 1. T 9 = 0% (17) 

rb,,(O, T) = 0. (18) 

(79t,(l. T) o 

3 
(19a) 

or 
&( 1. 5) = 4,. (1%) 

The interface condition is 

The solid phase temperature solution 0, which is valid 
for both the insulated and the isothermal boundary 
condition at 9 = 1 is 

(),, = in !.!ZG! - 1 I 
ln(l --gio) 

(‘1) 

For the insulated case. the liquid phase solution & is 

40 = 0. (22a) 

The corresponding solution for the isothermal case is 

+,, II A 
In (1 -co) 

In- .(1:2!L _._ 
It --rllil --“0)+/h’ 

(22b) 

P 
The interface solution G,, is obtained by substituting 

(71) and (32) into (20). For the insulated case rrii) is 
given by 

(1 -n,)2[ln(t -go)--f] = 2(A,+r), (23a) 

where A, is the integration constant which will be 
determined later by matching with the inner solution. 

For the isothermal case the differe~ltial equation for 

00 *s 

(24) 

Integration of (24) gives 

B,-(l+&)B-““’ ‘)T 

= #;! +!?!?. I2 ; fn in c1 i 
I 

+ i [2ln(l-cr,)/~~“‘+ ,‘]J 

,=I .i ..i ! 
-+[ln(l --cJ~)/~- p(‘* ,‘-$I 

x ( 1 -n,,)“/i - l’(’ i I, (73b) 

where B, is the constant of integration 
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(ii) First-order expnrzsion. The governing equations 
and boundary conditions for the first order problem 

are 

or 

@,(0,7)== Ol(i,T) =i),(o,T)=o, (27) 

+,(I, 7) 
_I_ = 0, 

G 
(2Pa) 

f$t(l.t) = 0. (28b) 

The temperature solution for the solid phase is 

In( 1 -CT&) 
(1, = __Y- I__ 

fn(l -CT”) (I -a,)ln(l -a,) 
-j--s 1. 

(30) 

Equation (30) satisfies both the insulated and isother- 
mal conditions at q = 1. The liquid phase solution for 
the insulated case is 

f$, =o. (31a) 

The corresponding solution for the isothermal case is 

X __L__ 13, _____~_._ (1 --Go) 
in (1 --(To)_ (1 -YNl -Go)+lh 

P 

Pfl ---. 
(1 -rl)(l -mi . (jib) 

The interface solution cil for the insulated case is 

Al 
Is1 = (I_cr,,)ln(l -a”)’ 

(32a) 

For the isothermal case the differential equation (29) 
for U, cannot be integrated to give an exact solution. 
However, since G” < 1 for small values of the large 
time variabIe and 0 < [Z < I, an approximate solution 
for u1 for r e 1 can be obtained for I(1 
+ 4i)a,,/ln \j\ Q I. This solution is given by 

(il = 3,/a,. 

where B, is the integratjon constant. 

(32b) 
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(iii) Second-order expansion. The governing equa- 
tions for the second order problem are considerably 
simplified if we take advantage of the matching 

presented later in this section which shows that A, 
= B, = 0 and consequently 8, = Cpi = aI = 0. Based 
on this observation the governing equations and 
boundary conditions become 

-0, (34) 

(35) 

(36a) 

The temperature solution Bz in the solid phase is 

1 
- fl -~o<)21n(l-o,<) 

4(1 -G,)*[ln(l -G*jy ( 

+2a,g -CT;;* + 
criIn(l--o,i:) 2n,In(l-cr,<) - _____~ 

In( 1 -GO) In( 1 - CJ~) 

-(l-oo)21n(l-~0~)~. (38) 
, 

Equation (38) is valid for both the insulated and 
isothermal boundary condition at q = 1. The solutions 
to (pz and o2 for the insulated case are 

and 

$2 = 0. (39a) 

(70(1 -@o/2) 
G2 = --_I-- 2(l -cl,)in(l -G”) 

-(I -G,)h(l-GO)‘ 
Wa) 

The second order solutions for @2 and g2 for the 
isothermal case have not been obtained because the 
corresponding differential equations cannot be in- 

tegrated analytically. 
The outer expansion solutions are thus equivalent 

to a quasi-steady approximation. They satisfy the 
nonlinear interface equation (10) to order cl,’ for the 
isothermal case and to order c for the insulated case. 
However, the initial conditions (8) and (9) are not 
satisfied. To construct a composite solution valid for 
alf time we shall introduce a stretched time coordinate 
.T = z/c which is of order unity when 7: is small and of 
order C. It is on this stretched inner or small time scale 
that the transient behavior occurs through which the 
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temperature distr;bution in the liquid phase adjusts 
from its initial distribution (8) to the nearly quasi- 
steady state distribution given by (22) and (31). For 
uniform validity the behavior of the outer solutions for 
0 and CJ must match term by term as r approaches zero 
with the behavior of the inner solution as .Y ap- 
proaches infinity. 

Inner expansion 
In accord with the foregoing remarks we introduce 

the following inner variables with magnified time 
scale : 

&, 3) = e(& T), 

&(Ff, .F) = &(q. 7). 

6(.Jj) = a(t), 

.F = 7/c. 

From the definition of the dimensionless long time 
variable r it is evident that the reference time for the 
scaling of the dimensionless short-time variable Y is 
a’,%,, the characteristic diffusion time for the solid 
phase. Substituting the inner variables into the govern- 
ing equations and boundary conditions (2))(lo), we 
obtain 

(464 

or 

C$( 1, .:‘) = C#& 

$(V> O) = (Pi, 

C?(O) = 0, 

(46b) 

(47) 

(48) 

2-Q 1, F) _ a&o, 7) ’ 
E (1 -&p)~--a----- 

I’g 

= $1 -d-fl)$. (49) 

To solve the system of equations (41)-(49), we 
assume inner expansions for & $ and ci of the form 

(50) 

&r/, f ; E) - i cn’*&(yl, .F), (51) 
“=O 

and 
N 

$.P;E) - c E”‘%“(.~). (52) 
n=O 

We proceed by substituting (50)-(52) into (41)-(49) 
and equating coefficients of like powers of E. The 
resulting equations simplify greatly if one first observes 
that the LHS of (49) is order c smaller than the RHS 
and consequently the solution for the zero-order inter- 
face location (ie which satisfies the initial condition 
(48)isG, =O. 

(i) Zero-order expansion. With d, = 0, the zero- 
order governing equations and boundary and initial 
conditions become : 

(53) 

= aE(l-P)V -It+!%@, (54) 

&(O, ,Y-) = - 1, (55) 

e,( 1, ,P) = 0, (56) 

&(O, -P) = 0, (57) 

&AI, .F:) I= o 

al? ’ 
or 

JO(l. ,F) = (pi3 (59) 

40(V> O) = 4il (60) 

c&(O) = 9 (61) 

d,(1-6,_8)$$ =o. (6.2) 

The solutions to 4, and e0 are 

0, = i-1, (63) 
and 

ci, = 0. (64) 

Both (63) and (64) are valid for the insulated and the 
isothermal cases. However, the liquid temperature & 
depends on the boundary condition at ye = 1. For the 
insulated case we obtain 

(65a) 

where L, is given by 

Ma) 
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and 
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The corresponding solution for the isothermal case is 

where y& is given by 

and 

! 

(ii) First-order expansion. The determination of the 
first order liquid-phase temperature solution 4, is too 
complicated and difficult to obtain. Fortunately, the 
interface motion c?r can still be obtained without 
knowing 4,. We therefore proceed with the governing 
equations and boundary and initial conditions for 1, 
and 6,: 

(67a) 

(65b) 

(67b) 

We note that the interface equation (69) does not yield 
any information on &I since 6, = 0 and (69) reduces to 
a trivial equation. To determine 0, we return to 
equation (49) and construct the next higher order 
equation corresponding to terms containing C. The 
resulting equation is 

ae,(l, 3) ^ dOr 

25 
=*1=. (711 

The solution to (71) subject to initial condition (70) 
gives 

d,(O, 3) = d,(l, 3) = r?,(O) = 0. (70) f?r = (2,JJ)r’z. (721 
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The solid-phase temperature solution 4, is obtained 
from the solution of (68): 

0, = &2.8)‘:2<(< - 1)‘ (73) 

It should be noted that both (72) and (73) are valid for 
the insulated and the isothermal boundary conditions. 

(iii) Secmd-order espansiou. As in the first-order 

solution, the interface location 6, can be obtained 
without knowing the first-order liquid-phase solution 
~$t. The differential equations, boundary and initial 

conditions for &, and ciz are: 

II, dri, & 
zz --5V1 dF (:r’ (74) 

and 

t&(0, .‘/) = &(l, UP) = (j2(0) = 0. (76) 

The solid phase temperature solution dz which is valid 
for both the insulated and isothermal cases is 

e, = i(4.F - I)<3 

,r2 

+(&-.,?-)~+;(f -q+. (77) 

The interface location ti2 for the insulated case is given 

by 

where 

(79a) 
For the isothermal case the solution is given by 

where 

D _a-8) 
h-- ?A 

i 

(79b) 

hff atchirrg 
To determine the integration constants A,. A,, A,, 

Bo, B,, in the outer solutions, the inner and outer 

expansions for the interface motion cr are matched as T 
-+ 0 and .P + a. The outer and inner expansions for a 
are given by 

and 

fi = cr”scl,‘a,+ao,+O(C”:2), (SO) 

_ ^ 
0 = o,,~c”2$,+E62fO(i:J’2). (81) 

We consider first the insulated boundary case. For the 
outer expansion (so), (~a, et, and o2 are given by (23a), 
(32a) and (4Oa), respctivefy. The inner solutions ci,, 
oi, and R, are given by (64) (72) and (78a), re- 
spectively. The zero-order solution as given by (23a) is 

not suitable for matching. We first rewrite (23a) using 
binomial expansions 

-0; 
i 

-f,_~+& ~=2t+U*+~. (82) 

To facilitate matching we assume that e,, can be 

expressed as 

fro = a,+a,(z)“‘+a,s+a,z”“. (83) 

Noting that the inner expansion ci vanishes as T --t 0, 

matching with (T requires that ito = 0. Substituting (83) 
into (82) and equating terms of equal powers oft gives 
A, = -a, a, = @)‘I*, a1 = f and u3 = 2(2)“2/9. 

Therefore 

The constants A, and A, are now determined. 
Starting with (32a) and expanding for small go we 

obtain 

Taking the limit as r -+ 0 and using (84) we have 

Working now with (r2 in (40a) and using binomial 
expansions, we obtain 

f 
62 =(2+0,) 0” l ~1.f+~j+d,(;+f,. (87) 

Taking the limit as r + 0 and using (84), equation 
(87) becomes 

1 -. c2 = 15+ A21 (2*)‘:2. (88) 

Substituting (84), (86) and (88) into (80) we obtain 

The inner expansion 6 is now obtained by substituting 
(64), (72) and (78a) into (81), taking the limit as .F 
-+ cc and rewriting in outer variables. 
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Matching (89) with (90) gives 

A, =O, A, = -4. (91) 

We will now consider the isothermal case to de- 

termine the constants L?, and Bi. The outer solutions 
for co and gi are given by (23b) and (32b), respectively. 
The inner solutions for c?,, d, and &Z are given by (64) 
(72) and (78b). The solution for e,, as given by (23b) is 
not suitable for matching. To overcome this difficulty 

we return to (24) and simplify it using binomial 
expansion for ln( 1 - oo) where I(1 + 4i)a,/ln /?~l < 1 to 
obtain 

Integrating we obtain 

r+B, =$-$$+;~r~;. (92) 

Equation (92)is still not suitable for matching. Follow- 
ing the same procedure used in the insulated case we 

assume that 

(ro = b,+h,(t)“Z+h2T+b373,2. (93) 

Noting that the inner expansion C? vanishes as t + 0, 

matching with the outer expansion o requires that 
b, = 0. Substituting (93) into (92) and equating 
terms of equal powers of r gives B, = 0, b, = (2)1’2, 

b, =3(4Jn/?)+f and b3 = 5/18(2)“2(l+2~i/ln~)2. 
Therefore 

o. = (2~)“~ +i(l+$jT 

(94) 

Substituting (32b) and (94) into (80) we obtain 

insulated case the outer expansion to order &3’2 is 
found to be independent of the parameters CC, p and pi. 
These effects appear in the second order correction, dz, 

of the short time solution. Examination of the zero- 

order long-time solution, equation (23a), shows that it 
is regular as r + 0 as well as for large values of r. Thus, 
the zero order solution o0 can be used to predict total 
freeze time which for p = 0 is found to be 0.25. 
However, the second order correction is singular at 
both ends of the time scale. Figure 2 shows the inner 
and outer expansions for the case of a = 1, & = 2 and 
E = 0.05. Because of the singularity at large r, total 
freeze time cannot be predicted for all values of p. Since 
the maximum possible interface location is given by 

(T max = 1 -/I, it follows from Fig. 2 that the singularity 

is of no consequence for all cases of b greater than 
approximately 0.11. This large time singularity of the 

outer expansion has been treated by Riley et al. [7] for 
freezing in a cylinder of a liquid which is initially at the 

fusion temperature. Figure 3 compares their solution 
with our results. Also shown in Fig. 3 is the numerical 
solution of Beckett [20]. Except for the region of 
singularity at large z, our solution is in excellent 

agreement with the results of [7] and [20]. 
For the isothermal case the outer expansion to order 

8 3r2 is independent of a. The effect of this parameter 

appears in the second order correction of the short 
time solution. While the outer expansion becomes 
singular as r -+ 0, it is well behaved at large t in 

contrast to the insulated case. Furthermore, it con- 
verges to the exact steady state solution given by 

e(_&) = 1 _~ll”“‘J, (98) 

as T + X. Figure 4 is a plot of the normalized interface 

The inner expansion C? is now obtained by substituting (64), (72) and (78b) into (81), taking the limit as .P + Y, 
and rewriting in outer variables 

(96) 

Matching (95) with (96) gives 

B, =O. (97) 

Thus matching of the inner and outer expansions for 
the interface motion yields all the unknown constants 
of integration for both the insulated and isothermal 
cases. Having thus determined these constants, the 
solid-phase temperature for the inner and outer expan- 
sions must also match. This was carried out and it was 
established that matching of the temperature expan- 
sions is consistent with matching of the interface 
motion. 

4. RESULTS 

Of particular interest in free boundary problems is 
the determination of the interface motion. For the 

a(7)/a(co) for a = 1, 4i = 2 and E = 0.05. Inner and 
outer solutions corresponding to /J’ = 0.05, 0.1, 0.15 
and 0.5 are shown. As indicated in Fig. 4 the parameter 
p plays an important role in the interface solution. The 
breakdown in matching for p > 0.15 is traced to the 
condition I(1 +~#~~)cr,,/ln/?I < 1 used in the analytic 
determination of the constant Bo. As fl and $i are 
increased this analytic approximation becomes in- 
valid. The value B, = Odetermined by this approach is 
therefore an approximation. In general B, is a function 
of a and c#J~. One way of relaxing the limitation on this 
solution is to carry out the matching numerically, 
adjusting the value of B, until the outer and inner 
expansions match in an overlapping domain. This was 
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FIG. 2. inner and outer expansions of the interface location- 
insulated boundary. 

--- PERTURBATION THEORY,REF[7] 

NUMERICAL SOLUTION,REF.[20] 

FIG. 3. Comparison of the outer expansion with the solutions 
of Riley et al. [7] and Beckett [20]. 

done for 4i = 2 and /J’ = 0.15 and 0.5. It was found that 
a choice of B, = - 0.266 for fi = 0.15 and B, = - 0.07 

for /I = 0.5 shifts the corresponding outer expansions 
towards the inner solutions such that the two overlap 
as shown in Fig. 4. 

The inner and outer expansions for the liquid-phase 
temperature distribution are shown in Fig. 5 for the 
insulated case with t( = 1 and fl = 0.5. The transient 

characteristic of the temperature profile is exhibited by 
the short time solution. However, the long time 
expansion to order E”~ gives the trivial solution 4 = 0. 

For the isothermal case a steady state solution exists 
which is given by the zero-order long time solution 

(22b) corresponding to the exact steady state interface 
location predicted by (98). Figure 6 gives the short and 
long-time solutions for x = 1, fi = 0.1. q = 0.5 and t: 

= 0.05. The long-time expansion to order c gives the 
quasi-steady solution. This solution becomes invalid 
as 5 -+ 0. This non-uniformity is associated with the 
singularity of cr,, in equation (23b). 

The long-time solid phase temperature solutions for 
the insulated and isothermal cases become non- 
uniform as 7 + 0. For the insulated case the non- 
uniformity develops in the second-order correction @I 
and is traced to the singularity of 02. For the isother- 
mal case the non-uniformity is attributed to g,, and 
appears in the zero-order solution Q,,. Examination of 

the outer expansions shows that to order c32 the 
solutions are independent of 2. /I and $J~. The effect of 
these parameters develops in the second order cor- 
rection, (?I, of the short-time solution. 

5. CONCLUSION 

The two cases considered, the insulated and the 
isothermal inner boundary conditions, are found to 
exhibit contrasting behavior. This contrast is traced to 
the physics of the problem which is fundamentally 
different for the two cases. 

(i) For the insulated case, except on the short time 
scale, the effect of the initial temperature T, is minor 
when the sensible heat is small compared to the latent 
heat of fusion (E < I). Consequently solutions do not 
depart markedly from those corresponding to liquids 
which are initially at the fusion temperature Tr. 

----OUTER 

-INNER 

I 

.20 5 

FIG. 4. Inner and outer expansions of the interface location-isothermal boundary 
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v 6. 

FIG. 5. Inner and outer expansions of the liquid phase 
temperature distribution-insulated boundary. 

----OUTER 

-INNER 

cc-10 

FIG. 6. Inner and outer expansions of the liquid phase 
temperature distribution-isothermal boundary. 

(ii) For the isothermal case the initial temperature 
plays an important role in the solution even if the 
sensible heat is small compared to the latent heat of 
fusion. Therefore, approximate solutions which as- 

sume the initial temperature to be the same as the 
fusion temperature are invalid. 

(iii) The effect of curvature /I on the solution is 
minor for the insulated case but significant for the 
isothermal case. 
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SOLUTIONS DE PERTURBATION POUR LA FUSION OU LA SOLIDIFICATION DANS 
DES REGIONS ANNULAIRES INITIALIMENT A UNE TEMPERATURE DIFFERENTE DE 

CELLE DE FUSION 

Rbum&On ttudie la solidification centripite d’un liquide dans un espace annulaire initialement i une 
temperature diffirente de celle de la fusion. La surface cylindrique externe est maintenue i une tem- 
perature au dessous de celle de solidification que la surface cylindrique interne est soit isolte, soit ri 
temp&ature constante. On obtient de nouvelles solutions de perturbation pour la distribution de tem- 
pCrature et le diplacement de I’interface. Le paramPtre de perturbation 

Cs(Tf- T”) 
e= 

Y 

est le rapport de la chaleur sensible de la phase solide ri la chaleur latente de fusion. La non-uniformit 
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des solutions $ longue tchelle de temps est traitCe en construisant des dkeloppements internes zi petite 

tchelle de temps. Les deux solutions sont iprouvtes en utilisant la thtorie asymptotique. Les solutions 
pour le cas d’isolation ne se dCmarquent pas fortement, except6 pour les temps courts, des solutions 
correspondantes pour des liquides initialement $ la tempkrature de fusion Tl. Par contre, les solutions 
relatives a’la limite interne isotherme diffirent nettement de celles obtenues pour une tempkrature initiale 
Cgale i Tf. Ceci est vrai mCme si la chaleur sensible est petite par rapport d la chaleur latente de fusion. 
La courburejoue un r81e mineur dans le dbplacement de I'interface dans le cas de I'isolation tandis que 

son effet est dramatique dans le cas isotherme. 

STORUNGSLOSUNGEN FUR SCHMELZEN ODER GEFRIEREN IN 
KREISRINGGEBIETEN, DIE SICH ANFANGS NICHT AUF 

SCHMELZTEMPERATUR BEFINDEN 

Zusammenfassung-Die Arbeit behandelt den inneren Erstarrungsvorgang von Fliissigkeit in einem Kreisring- 
gebiet, das anfangs nicht die Schmelztemperatur hat. Die BuBere Zylinderoberflache wird unterhalb der 
Erstarrungstemperatur gehalten, wihrend der innere zylindrische Rand entweder als isoliert oder auf konstanter 
Temperatur befindlich angenommen wird. Fiir die Temperaturverteilung und die Bewegung der Phasengrenze 
wurden neue Stiirungsliisungen gefunden. Der StGrungsparameter 

ist das Verh6ltnis der fiihlbaren W&me der festen Phase zur latenten SchmelzwSirme. Die UngleichWrmigkeit 
der Langzeit-Liisungen wird durch Reihenentwicklung im Kurzzeit-Bereich behoben. Die beiden LGsungen 
werden mittels der Asymtoten-Theorie ineinander iiberfiihrt. Die Lijsungen fiir den isolierten Fall unterschelden 
sich nicht deutlichbausgenommen im Kurzzeit-Bereich--van den entsprechenden LGsungen fiir Fliissigkeiten, 
die sich anfangs auf der Schmelztemperatur T, befinden. Im Gegensatz dazu unterscheiden sich die LGsungen 
fiir die isotherme innere Berandung wesentlich von denen mit einer Anfangstemperatur von r,. Das trifft sogar 
noch zu, wenn die fiihlbare Wgrme klein im Vergleich zur latenten Schmelzwarme ist. In ahnlicher Weise 
spielt die Kriimmung bei der Bewegung der Phasengrenze im isolierten Fall nur eine untergeordnete Rolle, 

wghrend ihr EinfluB im isothermen Fall :uDerst stark ist. 

PEIUEHME METODOM B03MYIIIEHMfi 3AAAYM 0 FIJIABJIEHMM HJIM 
3ATBEPAEBAHMM B KOJIbUEBbIX 30HAX C HAYAJIbHOR TEMl-IEPATYPOti. 

OTJIMYHOR OT TEMIlEPATYPbI FIJIABJIEHMtI 

.hmoTamin- PaCCMaTpHBaeTCR 3aTBepneBaHLie XO4IlKOCrH BKOnbUeBOM npOCTpaHCTBeCHaYanbHOfi 

TeMnepaTypoA, ~~JIWIH~A OT reMnepaTypb1 nnaBneHw HawHalouIeecfl BO BHemHeii o6nacTu. 

BHemHRn noBepxHocTb uwn4Hnpa nonnepmMBaeTcn npH TeMnepaType Hwe TeMneparypbr saMep- 

3aHwi. Ilpennonaraenzn, wo BHyTpeHHnn noBepxHocTb nrt6o A3onApoBaHa. nu6o nonnepxcnBaeTcfl 
npH nocTosHHoB TeMnepaType. MeTonoM 803MymemiR nonyYeHbr pacnpeneneHue TehmepaTypbl H 

3aKOH DBWKeHUR rpaHMUblpa3DLla. napaMeTpOM B03MyLUeHRk, 

BBn5reTcR 0THomeHAe TennoconepYaHHR Tsepnofi 4a3bl K cKpblTofi TennoTe nnasneaun. HeonHo- 

pOIlHOCTb PemeHsfi n0 DnHHHOBpeMeHHOfi UIKaJIe PaCCMaTpHBaeTCS C nOMOUlbI0 BHyTpeHHerO 

pa3nOwteHHn n0 KOPOTKOBpeMeHHOfi !JKa."e. %A PeUJeHAH CUlABaK)TCR C nOMOUlbI0 BCAMnTOTH- 

YeCKOii TeOpHH. B CJlyYae W3OJT‘IpOBaHHOti BHyTpeHHeR nOBepXHOCrH B PeUIeHARX He Ha6JImnaeTCn 
3aMeTHblX OTKJlOHeHRfi (38 HCKJlF0YeHHeM peUJeHHil n0 KOpOTKOBpeMeHHOfi LLlKaJIe) OT COOTBeT- 

crsy10wix peurewfi nnn mMnKocTeR c HaqanbHoi2 TeMnepaTypoiI, paBHoE TeMnepaType nnaaneHAR 

r,. PeLUeHHR,KeILE4R30TePMHYeCKOkBHyTpeHHeii rpaH~Ub~3Ha'IRTeJIbHOOTJ,TIAYaIOOTCIIOTCOOTBeT- 

CrByIOLUHX petueH&4 c HaqanbnoA TeMnepaTypoR, paseoti -reMnepaType nnaBnerw4 Tf. 20 

pacxoxcnesee HaGnwnaeTc8 name B TOM cnyyae, Korna TennoconepxaHae HeBennKo no cpaBHeHuio 

CO CKpblTOfi renJlOTOti nnaBJleHLiR. AHaJlOrHVHbIM o6pa3oh$ KpRBU3Ha OKa3blBaeT HeSHaSATenbHOe 

snan~~ertanepe~emeH~erpa~~ub~pa3aena~a3acny~aeu3onmposaliHoira~y~pe~He~noaepx~oc~~, 

TOrna KaK BCny',ae M30Te,,MMYeCKOfi nOBepXHOCTA C~BNIflHAeBeCbMaCyLUeCTBeHHO. 


