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Abstract—This paper deals with the inward solidification of liquid in an annular space which is initially not
at the fusion temperature. The outer cylindrical surface is maintained at a subfreezing temperature while the
inner cylindrical boundary is assumed to be either insulated or maintained at constant temperature. New
perturbation solutions are obtained for the temperature distribution and the interface motion. The
perturbation parameter ¢ = C,(T, — T,)/L is the ratio of the sensible heat of the solid-phase to the latent heat
of fusion. The non-uniformity of the long-time scale solutions is treated by constructing inner expansions in
the short-time scale. The two solutions are matched using asymptotic theory.

The solutions for the insulated case do not depart markedly, except on the short time scale, from the
corresponding solutions for liquids which are initially at the fusion temperature T;. In contrast. the solutions
for the isothermal inner boundary depart substantially from those with an initial temperature equal to 7.
This is true even if the sensible heat is small compared to the latent heat of fusion. Similarly, curvature plays a

minor role in the interface motion for the insulated case while its effect is dramatic in the isothermal case.
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NOMENCLATURE

radius of outer cylinder
integration constant ;
radius of inner cylinder ;
integration constant ;
specific heat ;

thermal conductivity ;
latent heat of fusion;
perturbation order ;
radial coordinate ;
interface location;

long time variable;;

short time variable ;
temperature ;

temperature at boundary;
fusion temperature ;
initial temperature of the liquid phase.

Greek symbols

u’

Q

)

thermal diffusivity, ratio of solid to
liquid-phase thermal diffusivity ;

ratio of inner to outer cylinder radius;
perturbation parameter ;

dimensionless radial coordinate in the
liquid phase;

dimensionless solid-phase temperature ;
dimensionless radial coordinate in the
solid-phase;;

density ;

dimensionless interface location ;
dimensionless long time ;

dimensionless liquid-phase temperature ;
dimensionless initial liquid-phase
temperature.
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Subscripts

0,1,2, zero, first and second-order perturbation;
A liquid ;
s, solid.

Superscripts
inner expansion.

1, INTRODUCTION

A LARGE number of technically important problems
involve solutions of the equations describing diffusion
of heat, mass, or some other scalar quantity subject to
boundaries that are neither fixed in space nor known a
priori. Examples of such problems are found in
melting, freezing, casting, welding, ablation and frost
formation. Appropriately, much work has been done
in treating these free boundary multiphase problems.
Boley [1], Bankoff [2], Muehlbauer and Sunderland
[3], Rubinstein [4] and Fox [5] cite many references in
their comprehensive literature surveys.

The inherent difficulty in the analysis of such
problems is the nonlinear nature of the interface
boundary condition which precludes superposition
and necessitates the use of special solution techniques.
Another difficulty arises in finite domain problems
where self-similar solutions cannot be constructed.
Because of these two mathematical difficulties, only the
simplest type of free boundary problem has been
considered. Neumann’s [6] solution to the problems of
freezing in a semi-infinite region, which was presented
in the 1860’s remains one of few exact solutions
available.

Understandably, most models used in the analysis of
multiphase free boundary problems are highly sim-
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plified, often limited to one-dimensional systems with
simple geometries and boundary conditions which
lend themselves to analytical treatment and experi-
mental simulation. Two common simplifications are
(i) the assumption of quasi-steady behavior and (ii) the
restriction to an initial temperature which is equal to
the fusion temperature. Unfortunately, while this last
limitation simplifies the mathematical complexity, it
fails to represent problems of practical interest. Re-
cently a number of investigators have focused on non-
similar free boundary problems in which the phase
ahead of the advancing interface is at the fusion
temperature or surface concentration. Riley, Smith
and Poots [7], Tao [8], and Pedroso and Domoto [9]
have examined the inward solidification of cylinders
and spheres, Jiji [10] and Shih and Tsay [11] the
outward growth and decay of a solid phase on a
cylindrical surface, Duda and Vrentas [12,13], the
growth and dissolution of a spherical bubble and Cho
and Sunderland [14], Shih and Chou [15], and
Theofanoas and Lim [16] the solidification of a
saturated liquid outside a sphere.

For free boundary problems in finite domains which
are initially at the fusion temperature it is possible to
introduce a single coordinate transformation in which
the moving interface is immobilized by scaling the
independent distance coordinate by the instantaneous
interface location. This transformation shifts the non-
linearity from the interface boundary conditions to the
governing differential equation for the solid phase
which in this case remains a partial differential equa-
tion since a similarity solution does not exist. Duda
and Vrentas [12. 17] applied this procedure for both
cylinders and spheres where one of the phases is at the
fusion temperature or interface concentration. For the
more general case where both phases are of finite
extent with the initial temperature not equal to the
fusion temperature, a double coordinate transfor-
mation is required since a different instantaneous
length is necessary for each region. This double
transformation technique is developed in Weinbaum
and Jji [ 18] and applied to the solution of freezing in
finite slabs.

This paper presents perturbation solutions for the
problem of inward solidification in an annulus which is
initially not at the fusion temperature. The outside
radius of the annulus is maintained at a sub-freezing
temperature while the inside radius is either insulated
or maintained at constant temperature above the
fusion level.

A double transformation is used to immobilize the
interface and the resulting equations are solved by the
method of singular perturbation. The perturbation
parameter ¢ used in the solution is defined ase = C (T}
— T.)/L where C, is the specific heat of the sohid phase,
T, the fusion temperature, T, the temperature of the
outer boundary of the annulus and L is the latent heat
of fusion. Thus ¢ is the ratio of the sensible heat of the
solid phase to the latent heat of fusion. Typical values
of C /L per °C for representative materials are 0.006 for
ice, 0.00163 for iron and 0.005 for lead. Since per-

turbation solutions are valid for ¢ < 1, substantially
high values of (T,—T,) can be tolerated without
compromising the accuracy of the solution.

The perturbation solution presented here is moti-
vated by the nature of quasi-steady and quasi-
stationary solutions to free boundary problems in
finite domains previously obtained by other in-
vestigators. In the quasi-steady approximation the
unsteady term is omitted in the differential equation
and the gradient at the interface is determined by
solving the steady state diffusion equation with a
stationary interface. Representative solutions are the
dissolution of a gas bubble obtained by Bankoff [2]
and Rosner [19]. In general, quasi-steady solutions are
not capable of satisfying initial conditions. In the
quasi-stationary approximation the unsteady term is
retained in the diffusion equation and the latter solved
assuming that the interface is stationary. Duda and
Vrentas [17] have shown that the quasi-stationary
approximation is the leading term of a series solution
based on regular perturbation procedure for the finite
region problems with only one non-uniform phase. In
retaining the unsteady term in the diffusion equation,
the quasi-stationary approximation is capable of satis-
fying an initial temperature or concentration profile.
However, the solution in general will not be valid for
all time if the temperature ahead of the advancing
interface is not uniform and is changing due to the
interface motion.

The properties of the quasi-steady and quasi-
stationary approximations just described suggest that
it might be possible to construct a composite series
solution in the perturbation parameter ¢ which is
uniformly valid for all time as a matched asymptotic
expansion. In such an expansion the quasi-steady and
quasi-stationary approximation serve as the lowest
order generating functions in a scheme of successive
asymptotic approximations. One anticipates that the
composite solution has a boundary-layer-like struc-
ture, that is to say, a long-time behavior in which the
interface motion is a slowly varying function of time
and the temperature or concentration profiles are close
to an instantaneous quasi-steady state distribution in
some asymptotic sense. and a short time behavior in
which the interface motion is rapidly varying and the
temperature or concentration profiles are also rapidly
changing so as to satisfy appropriate initial conditions.
The reason for introducing two separate time scales in
the analysis is that different mathematical simplifi-
cations obtain on the short and long time scales. On
the short time scale one is able to simplify the interface
boundary condition and satisfy the initial conditions
whereas on the long-time scale one is able to neglect
the initial conditions and simplify the governing
differential equations but satisly the nonlinear in-
terface conditions. Two separate solutions of different
character emerge in the form of infinite series in
fractional half powers of ¢ which when matched term
by term in a region of overlapping validity provide a
composite solution which is uniformly valid for all
time.
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2. FORMULATION

The two problems considéred are shown in Fig. 1.
The liquid in the annular space is initially at tempera-
ture T; which is above the freezing temperature 7. At
time t = 0 the outer tube boundary atr = aissuddenly
maintained at a sub-freezing temperature 7,. In the
first problem the inner tube boundary at r =05 is
assumed to be perfectly insulated while in the second
problem this boundary is maintained at temperature
T.. These two boundary-value problems are distin-
guished only by the boundary condition at » = b but
they exhibit a markedly different behavior as time
progresses. When the inner tube is insulated the entire
liquid in the annular space will eventually solidify. On
the other hand when the inner tube is maintained at a
constant temperature, a steady state is reached in
which only a portion of the liquid solidifies.

F1G. . Configuration and coordinates.

To simplify the problem, the fluid properties in each
phase will be assumed constant. Volumetric expansion
or contraction due to phase transformation will be
neglected. Free convection currents in the liquid phase
will be ignored. Based on these simplifications the
energy equation in the solid and liquid phases become:

ST, 10T, o,
= —=2 =22 rt)y<r<a,
‘<\ &t r ét (0
and
(22T, 1éT, °T;
i i v AE i
Gyl + - =, b<r <),
o Tror A (0

where the subscripts s and ! denote solid and liquid
phase, respectively, and « is the thermal diffusivity. The
boundary conditions for the two problems considered
are

T{a. 1) =T,
Trut) = Tirit) =T,
éTy(b, t)

jad

cr

=0 or Tb,t)=T.

The initial conditions on the liquid temperature T, and

the interface location r(r) are
T(r.0)=T,
{0l =a
The energy balance at the interface gives
K‘(.}T;(rh t)_ 6’1—;(?‘;, f)

L) cr

dr;
== PLE,

K,

where p is the mass density.

To non-dimensionalize the governing equations and
immobilize the boundaries, the following dimension-
less quantities are defined:

_ f.'([)"’"

= 1‘7([)-b

; a-r

=T ‘;1—7.{“)

T = e tfa?

0= (T-THT,-T) | ()

¢ = K(T,— THAK(T;~T,)
o = {a—r})a

o= a/u

B =bla

¢ = C(T;—T)/L.

Two dimensionless distance coordinates # and ¢ are
required to immobilize the interface location and the
inner tube boundary. This is an important distinction
between the present analysis and the theory in [12],
{13] and [17] where the region ahead of the advancing
interface is at the fusion temperature. The reference
time a®/x, is the characteristic diffusion time for the
solid phase, whereas the characteristic time used in the
definition of the dimensionless time 7 is a%/ex,. This
latter time is long compared to the solid diffusion time
if ¢ < 1 and represents the characteristic time for the
interface motion to occur. #, ¢ and ¢ are the dimen-
sionless temperatures in the solid and liquid phases
and dimensionless interface location, respectively.

Using the dimensionless guantities defined in (1),
the governing equations and boundary conditions
become:

0 _ . 0_23_0_ . do 28
o0& 1—gl 08 et

C =z
Tdr ol

0<é<l, (2)

26 (1—a~f) 24
an* [(1—o)—(I—a—P)n] on
e o= oy g7 09
= =0 =B 5= (=0 = =g o
O<n<t, (3
60,7) = — 1, @
0(1,7) = 0, (3)
¢(0,T)=0~ (6)
%{g;ﬁlzq (insulated case) (7a)
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or
¢(1. 1) = ¢,, (isothermal case) {7b)
¢(n,0) = ¢, (8)
6(0) =0, )
(l—g— B){ Gf}k 2 a(‘qb((ﬂvi’ 2

:o(l—a—/ﬁ)%g. (10)

Examination of equations {2}-(10) shows that the
free boundary problem has been transformed to a
stationary problem and the nonlinearity due to the
unknown interface motion r;(t) is shifted from the
interface boundary conditions to the differential equa-
tions (2) and (3). Furthermore, the problem is gover-
ned by four parameters «, f3, ¢ and ¢;. The thermal
conductivity ratio K /K, is eliminated as a parameter
by including it in the definition of the liquid tempera-
ture ¢. The thermal diffusivity ratio a = a/% is
approximately equal to unity for most materials. The
geometry parameter f# = b/a is a measure of the
curvature of the annular space. The special case of f§
= 0 represents solidification in a tube. For this case,
only the insulated inner boundary problem is physi-
cally possible.

3. PERTURBATION SOLUTIONS

Outer expansion

We seek approximate solutions to equations (2) and
(3), subject to boundary and initial conditions
{4)-(10), in the form of an asymptotic expansion valid
for ¢ < 1. A cursory examination of equations (2) and
(3) shows that a regular perturbation expansion of the
form

M tie) ~ z\: £M20,(E, 1), (1
n:\‘()
UL T ) ~ "ZQ £ 20, 1), (12)
and
olts8) ~ io &%, (1), (13)

is singular as r — 0. The time derivative terms contain-
ing 00,/¢t and 8¢/t in the lowest order differential
equation for (2) and (3) are lost and initial condition
(8) cannot be satisfied. The nonuniformity of the
expansions (11}-(13) in the domain near v =  will be
corrected by constructing inner expansions for 0, ¢
and ¢ valid on a time scale where t < 1. These inner
expansions will satisfy the initial conditions (8) and (9)
and match in a region of overlapping validity with the
series solutions {11)--{13) which is the large time or
outer expansion.

The zero, first and second order outer expansions
are constructed by substituting (11)-(13)into (2)-(10)
and equating terms of identical powers of & The
governing equations and boundary conditions will
thus be formulated and solutions for the two cases
under consideration will be presented.
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(1) Zero-order expansion. The zero-order solid and
liquid phase equations are

20, N

(I—GOK) Az — 0y Az =0, O<i<t, (14

and
[(1 =1 o)+ ] 22 )90 =0
O<np<l. (15)
The boundary conditions are
U0, 1) = —1, {16)
Oo(1, 1) = 0, (17)
hol0.7) =0, (18}
Oyl 1) _
i 9;7 L=, {19a)
or
ol 1) = . (19b)
The interface condition is
(=00 —f) o1, 7) o, l’(f)OfO. )
(g (&)
= a,ll _rﬁ"ﬁ)d(() . {20)

The solid phase temperature solution ¢, which is valid
for both the insulated and the isothermal boundary
conditionaty = 1 is

In(l=0,3)
g = U7 00s) 2
% Tn(l=a,) 21
For the insulated case, the liquid phase solution ¢, is
¢y =0 {22a)
The corresponding solution for the isothermal case is
¢i (1 ““('()) PN
- e (22D
o= g "=t =e i Y

In 5

The interface solution ¢, is obtained by substituting
{21) and (22) into {20). For the insulated case o, is
given by

(1—oo)[In{t —gy)—1] = 2(4,+1),  (23a)

where A, is the integration constant which will be

determined later by matching with the inner solution.
For the isothermal case the diflerential equation for

Ty 18

(1’ ~6q)day,

dr = - 8 24)
qb,,’lnx — e = In(l —gy)
&gy
Integration of (24) gives
Bo—(1+)p2"" Ve
hlﬁ 2 /}1 i+
qs{vli{“‘;: tn In” “r()v
[21n( (1—ag)f~ Lt ’]’
Z it
=g ]
X (1—ag)? 720" 0 (23b)

where B, is the constant of integration.
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(i) First-order expansion. The governing equations
and boundary conditions for the first order problem
are

éd,

(1 “‘705)‘?&2 ‘015 ;aéz "‘70"9—;—01 &z =0, (25)
7 {:;Z¢ ¢ '\2¢
(1—'1) (1_00) é\nzl — 035 20+[; 0”1
—(1=co—§) "" 5%9—0. (26)

91(0,1:):?(}1(1,1) =¢,(0,1) =0, (27)

ol _g (28a)
cn
or
$4(1.1) =0 (28b)
;o (1,1 Bo(L, T
1=y 0lLT) 5, Bl 1)
g C¢
. A
—60(%@(0’{)—“01((}50«‘0’1)
én cn
do do
=0a,(l -0, ﬁ)Eﬁ‘ 50“1'&‘3
do
+o4(l—ay [S)FTQ (29)
The temperature solution for the solid phase is
0 = O In{t—goé) &
T hn(l—og) | (I—o)In(l —og)  1—048 |
(30)

Equation (30) satisfies both the insulated and isother-
mal conditions at # = 1. The liquid phase solution for
the insulated case is

$, = 0. (31a)
The corresponding solution for the isothermal case is
$104
pr=— P
(1—ay)
{(1—0g)1 g
% l In (t—ay)
L A=ag)  (T=n)(I=ag)+ fn
n ———
B
__ P _ . (31b)

T (I=n)(l=ao)+pn
The interface solution o, for the insulated case is

Ay

———— 32
(1 —g,)In(l —oy) (32a)

oy =
For the isothermal case the differential equation (29)
for ¢, cannot be integrated to give an exact solution.
However, since oo < | for small values of the large
time variable and 0 < f§ < 1, an approximate solution
for ¢ for = < | can be obtained for |(1
+ ¢;)o,/In B] < 1. This solution is given by

6, = B,/0y.

where B, is the integration constant.

(iil) Second-order expansion. The governing equa-
tions for the second order problem are considerably
simplified if we take advantage of the matching
presented later in this section which shows that A,
= B, = 0 and consequently 8, = ¢, = ¢, = 0. Based
on this observation the governing equations and
boundary conditions become

&0 020 a6, o
(I“GQK) 7_(7z€'{(~‘~29""”0 o — 03 5:0
= (I_U()L) %, +Uoc(50¢“l)d60 LFO»Ow (33)
o
[(1—n )(1"0'0)‘4”/3'1]( d)z"‘(l—‘ﬁ* 0)(2:2'
=0, (34)
0,(0,1) = 0,(1,7) = $,(0,7) = G, (35)
Oy (1 v)in =0 (36a)
o051, 1) 360(1 ™) é¢,(0, 1)
(1=0o=p) & o %o o

=g,{1— 200—/5) ~+00(l—~0'0 ﬂ)d"z. (37)

The temperature solution 6, in the solid phase is

In(l —g5¢)

T, I 1 4
{(1—05)In(l —ay)

In{1—ay) 5'0—00“‘”0'05)
1

41 —0o)?[In(1—a,)]° |

ailn(l —o4é) 2(701!1(1—00\_)

o min2 _
L Y g In(l —og)

0, =

{1 “505}2 In(l —a4¢)

+204¢

—(l=0p) In{l —go$) . (38)

Equation (38) is valid for both the insulated and
isothermal boundary condition at# = 1. The solutions
to ¢, and o, for the insulated case are

¢, =0, (39a)

and

i i

in(t —og) -1 !

I T
(I -4y {1l —g4)’

L oall=ay2)
27 2{t—g,)in{l —g,)

{40a)

The second order solutions for ¢, and o, for the
isothermal case have not been obtained because the
corresponding differential equations cannot be in-
tegrated analyticaily.

The outer expansion solutions are thus equivalent
to a quasi-steady approximation. They satisfy the
nonlinear interface equation (10) to order £*/* for the
isothermal case and to order ¢ for the insulated case.
However, the initial conditions (8) and (9) are not
satisfied. To construct a composite solution valid for
all time we shall introduce a stretched time coordinate
.7 = t/¢ which is of order unity when 7 is small and of
order ¢. It is on this stretched inner or small time scale
that the transient behavior occurs through which the
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temperature distribution in the liquid phase adjusts
from its initial distribution (8) to the nearly quasi-
steady state distribution given by (22) and (31). For
uniform validity the behavior of the outer solutions for
0 and ¢ must match term by term as t approaches zero
with the behavior of the inner solution as .7 ap-
proaches infinity.

Inner expansion

In accord with the foregoing remarks we introduce
the following inner variables with magnified time
scale:

0(¢, 7) = 0(¢,7)
dn, 7Y =y, 7).
HT)=0(),
T = 1/e.

From the definition of the dimensionless long time
variable 7 it is evident that the reference time for the
scaling of the dimensionless short-time variable .7 is
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To solve the system of equations (41)-(49), we
assume inner expansions for 8, ¢ and ¢ of the form

N
0(¢, 7ie)~ Y 0,8, 7)), (50)
n=0
$0. 700~ 3 g 7))
and
N
(7 ey~ Y, "6 (52)
n=0

We proceed by substituting (50)-(52) into (41)-(49)
and equating coefficients of like powers of ¢. The
resulting equations simplify greatly if one first observes
that the LHS of (49) is order & smaller than the RHS
and consequently the solution for the zero-order inter-
face location 4, which satisfies the initial condition
(48)is 64 = 0.

(i) Zero-order expansion. With 4, = 0, the zero-
order governing equations and boundary and initial
conditions become:

a*/a,, the characteristic diffusion time for the solid a0, 0 53
phase. Substituting the inner variables into the govern- ocr T (33)
ing equations and boundary conditions (2)—(10), we 5245 P
obtain (- a-pn 58 - a-p%e
2% a i:_éz o8 . do a6 (41)
a2 Ti-geat a7 Cdrer = a[(1—py(1 =+ pm] 220 M, 54)
2% - A
oo _ (1-5-p) oo 0,00, 7) = —1, (55)
on*>  [(1—6)~(1—6—p)n] on *
op ds é¢ Oo1. 7) =0, 56)
(&
= (l—a /3)2.?__—(1-—0 /- a7 o (42) o0, 7) =0, (57)
§0,.7) = —1 (43) 5‘3502} 7)o, (58)
6(1,7) =0, {44) or )
30, 7) =0, (45) Goll. 7) = o1 (59)
o Go(0) = 61)
or . . da,
B(1.7) =, (46b) Goll =6o=P g7 =0 (¢
$(n,0) = ¢, (47) The solutions to 8, and 6, are
G(0) =0, (48) 0o =¢—1, (63)
201, 7). 0¢(0, 7) | and
o 1-6-pP8T) 5220 7) G0 =0. (64)
¢ oy
dé Both (63) and (64) are valid for the insulated and the
=d{l ~d~f) a7 {49) isothermal cases. However, the liquid temperature ¢,
’ depends on the boundary condition at # = 1. For the
insulated case we obtain
. [ Bk
R x Ak i— Ak i 2 21
Po = ag  Jo| = (1=n+pn) i_ ) i Yy o (L—n+pn) | e Wami=p17 {65a)
K=0 1-p Y(ﬁ/lk ‘ t—p
"\1-p;
where Ay is given by
Bk
, Il
Ak L ui Ak 1=/
ol =% ) (662)
Y1( 1 -‘“[i; )
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and
Bk
a‘_(l_ﬂ)‘ﬁi Jl(l_ﬂ/ly( Ak }—J ( Ag ﬁzjz(ﬂ}“k
A v [ PPx " AVE P 1—13,) [-p
1 =8
Bix
| s ,
2f P& V=B | B o P s Ax
i e | 12l )
)
J (ﬂik
B Brg BAg Ak K ,
(mk- J(l p)YO(l /3) Jl(\l—ﬁ Yl (67a)
1-p
The corresponding solution for the isothermal case is
o _e[l-(-pm] ¢ 7 '
o= PR T B by | 0= |
[ By |
J
— O(VI“ﬂ)yo 7k (1__,,+ﬁ,1)l e ~Diai-pr]7 {65b)
V] l—ﬂ/,’
where y, is given by
"By
JO( |
7K _ \l_ﬂ/ Yk
J°(1—/3,,"Y(ﬁyk iYo(l_ﬂ}, (66b)
N-p
and
p = &ll=F) J"(lﬁzkﬂx)Y( Ky J( ®_y B 12 Brx !
T Y(ﬁwc | =g THI-B, 2 1“—5/
N/
Byx
25 1 e .
Lr2f Pk L=B7 B o2 Prx y 1y2f ¥
—ZJ%(I_B/HFYz( Yk ) 2 1 (1—/3/' 2Yi (xl_ﬂ/}'
YR
T
"0(1 ) ~
1=8; Brk iy ( Prx Tk TR
— e Pl T T e
Y°(1—ﬂ,,’

(i) First-order expansion. The determination of the
first order liquid-phase temperature solution ¢, is too
complicated and difficult to obtain. Fortunately, the
interface motion &, can still be obtained without
knowing ¢,. We therefore proceed with the governing
equations and boundary and initial conditions for 4,
and 6,:

%0,

6290 . 06,

T g @
Goll =G0 =) G+ 61401 - =0, (69)
0,00, 7)=6,(1,7)=¢6,(0)=0 (70)

We note that the interface equation (69) does not yield
any information on ¢, since ¢, = 0 and (69) reduces to
a trivial equation. To determine 4, we return to
equation (49) and construct the next higher order
equation corresponding to terms containing &. The
resulting equation is
o1, 7) . dé,
e %vare

The solution to (71) subject to initial condition (70)
gives

(71)

6, = QT2 (72)
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The solid-phase temperature solution 8, is obtained
from the solution of (68):

0, =327 E -1, (73)

It should be noted that both {72} and (73) are valid for
the insulated and the isothermal boundary conditions.

(iil) Second-order expansion. As in the first-order
solution, the interface location ¢, can be obtained
without knowing the first-order liquid-phase solution
$,. The differential equations, boundary and initial
conditions for 8, and 4, are:

62(22 . . 2%, G ,0200‘ ¢ty iq(l
w,:l a¢ 352 2% (352 15: 2 (75
.. dé, o6,
= TNgT (74)
eh(n, 7y L aby(1, Ty . 80, .7)
(1=p) = = =2 R
. dg, . dé; ,dé
=01(1—ﬂ)3;3+62(1—/1)d_ ity (79
and
éz(O, 37)392(1,/7):&2(0):0. (76)

The solid phase temperature solution #, which is valid
for both the insulated and isothermal cases is

0, =147 - 1)&
22

RN« Gy .
(6,7 ) 5+

-7 —-—=¢. (77
¥ 3 {7
The interface location 4, for the insulated case is given

by

Tl

Gy="=+ 3 ayCq
3 ¥

(1—5) 12 1
+ zik»{na) U‘)merf

_e-[iat-prls

Ak 2
a—pa@ )

where

x1-4)
K= -
A YJ( ﬁ/?.,\ }

(79a)
For the isothermal case the solution is given by

2<f>
{5 Z b!\DA

(l_ﬁ)(m()l T ve( )2
25 «ﬂ““%~mmm

(}:7::-;:{1—% _e"‘fuit ﬁ}z]*’

(78b)

(79b})

Matching
To determine the integration constants Ag, 4, 4,,
By, By, in the outer solutions, the inner and outer

expansions for the interface motion ¢ are matched as
-+ 0and .7 — o0. The outer and inner expansions for ¢
are given by

o= oo+et 20, +eo,+0(eY?),

(80)
and
(81)

We consider first the insulated boundary case. For the
outer expansion (80), 6, 0, and ¢, are given by (23a),
{32a) and (40a), respectively. The inner solutions 4,
§,, and &, are given by (64), {72) and (78a), re-
spectively. The zero-order solution as given by (23a)is
not suitable for matching. We first rewrite (23a) using
binomial expansions

G = Gy+8"%6 46, +0(e>2).

i
—50(—1+3~+}—7 |=20+240+% (82)
To facilitate matching we assume that ¢, can be
expressed as

O = dp+ay (1) 2 +azr+at? (83)

Noting that the inner expansion ¢ vanishes as 1 — 0,
matching with ¢ requires that a, = 0. Substituting (83)
into (82) and equating terms of equal powers of t gives
Ag=—3% a =@ a,=3% and a;=2(2)"?09.
Therefore

W7y,

o0 = 20"+ + (84)

The constants 4, and A, are now determined.
Starting with (32a) and expanding for small o, we
obtain

{
or=—A| —+1}. (85)
\Og A
Taking the limit as t — 0 and using (84} we have
4,
o= _'(21)1J2“ (86)

Working now with ¢, in (40a) and using binomial
expansions, we obtain

+1+“°]+A (1 +1) (87)

o /

i i
02 = (2+404) (

Taking the limit as 7 — 0 and using (84), equation
(87) becomes

] =(%+42)W5~ {88)
Substituting {84), (86) and (88) into (80) we obtain
L2 ( )1/2 52
= (20)"  ++ 3 Tt 5T
L, A 1
—ghi? ;1 2’\"5(2 2)(_2:{')172 39)

The inner expansion ¢ is now obtained by substituting
(64), (72) and (78a) into (81), taking the limit as 7
- oo and rewriting in outer variables.

) ;3,«’2 1_ } A}tz o l
o=@yt EBET e L e 90)
K=oAx

3 (T)iy’l
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Matching (89) with (90) gives

A, =0, A,= -1 (91)

We will now consider the isothermal case to de-
termine the constants B, and B;. The outer solutions
for oy and o, are given by (23b) and (32b), respectively.
The inner solutions for 6, ¢, and d, are given by (64),
(72) and (78b). The solution for a as given by (23b) is
not suitable for matching. To overcome this difficulty
we return to (24) and simplify it using binomial
expansion for In(1 —a,) where [(1+¢;)o,/Inf] < 1 to
obtain

¢l

dt = g,do, — (1 np )oO da,.
Integrating we obtain
ao 1 ¢ 1
t+By =) (1n/3+2) (92)

Equation (92)is still not suitable for matching. Follow-
ing the same procedure used in the insulated case we
assume that

6o = bo+ b (1) 2+ byt + b7 (93)

Noting that the inner expansion ¢ vanishes as t — 0,
matching with the outer expansion ¢ requires that
by, = 0. Substituting (93) into (92) and equating
terms of equal powers of t gives B, = 0, b, = (2)'/?,
b, =3¢/In)+3 and by =5/18(2)"*(1+2¢;/In §)*.
Therefore

insulated case the outer expansion to order ¢*/ is

found to be independent of the parameters a, f and ¢..
These effects appear in the second order correction, 6,,
of the short time solution. Examination of the zero-
order long-time solution, equation (23a), shows that it
is regular as r — 0 as well as for large values of . Thus,
the zero order solution ¢, can be used to predict total
freeze time which for B =0 is found to be 0.25.
However, the second order correction is singular at
both ends of the time scale. Figure 2 shows the inner
and outer expansions for the case of o = 1, ¢; = 2 and
& = 0.05. Because of the singularity at large 7, total
freeze time cannot be predicted for all values of §. Since
the maximum possible interface location is given by

Omax = 1 — B, it follows from Fig. 2 that the singularity
is of no consequence for all cases of § greater than
approximately 0.11. This large time singularity of the
outer expansion has been treated by Riley et al. [ 7] for
freezing in a cylinder of a liquid which is initially at the
fusion temperature. Figure 3 compares their solution
with our results. Also shown in Fig. 3 is the numerical
solution of Beckett [20]. Except for the region of
singularity at large 7, our solution is in excellent
agreement with the results of [7] and [20].

For the isothermal case the outer expansion to order
¢%? is independent of a. The effect of this parameter
appears in the second order correction of the short
time solution. While the outer expansion becomes
singular as 7 — 0, it is well behaved at large 7 in

— )2 1 2¢; 5 contrast to the insulated case. Furthermore, it con-
a0 = (27)" ( + Ing, ) verges to the exact steady state solution given by
5 2 — 1 —gU+an
T 18(2)7 (H?i) P04 =1 ’ on
( np as t — oo. Figure 4 is a plot of the normalized interface
Substituting (32b) and (94) into (80) we obtain
, 5 o 2¢: 2 B
— 1/2 1 1 i 3/2 1/2 1
=0 ( +ln/}‘ T (2)“2( +lnB)T te P TN T PO
@)+ lnﬁ) 807\ Ting) "
(95)
The inner expansion ¢ is now obtained by substituting (64), (72), and (78b) into (81), taking the limit as .77 — ¢
and rewriting in outer variables
o, o1 2¢; 3% (1—=P)(ma)'? & byDy
=242l 1429 , LA el A L
o =20+ 5( g St e > o (96)
Matching (95) with (96) gives
B =0. O7)  e(t)/o(w) for a = 1, ¢; = 2 and & = 0.05. Inner and

Thus matching of the inner and outer expansions for
the interface motion yields all the unknown constants
of integration for both the insulated and isothermal
cases. Having thus determined these constants, the
solid-phase temperature for the inner and outer expan-
sions must also match. This was carried out and it was
established that matching of the temperature expan-
sions is consistent with matching of the interface
motion.

4. RESULTS

Of particular interest in free boundary problems is
the determination of the interface motion. For the

outer solutions corresponding to f = 0.05, 0.1, 0.15
and 0.5 are shown. As indicated in Fig. 4 the parameter
f plays an important role in the interface solution. The
breakdown in matching for § = 0.15 is traced to the
condition |(1+¢;)e,/In Bl <1 used in the analytic
determination of the constant By. As f and ¢, are
increased this analytic approximation becomes in-
valid. The value B, = Odetermined by this approach is
therefore an approximation. In general By is a function
of f# and ¢;. One way of relaxing the limitation on this
solution is to carry out the matching numerically,
adjusting the value of B, until the outer and inner
expansions match in an overlapping domain. This was
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F1G.2. Inner and outer expansions of the interface location—
insulated boundary.
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F1G. 3. Comparison of the outer expansion with the solutions
of Riley et al. [7] and Beckett [20].

donefor ¢; = 2and = 0.15and 0.5. It was found that
achoice of B, = ~0.266for § = 0.15and B, = —0.07
for f = 0.5 shifts the corresponding outer expansions
towards the inner solutions such that the two overlap
as shown in Fig. 4.

The inner and outer expansions for the liquid-phase
temperature distribution are shown in Fig. 5 for the
insulated case with o = 1 and § = 0.5. The transient
characteristic of the temperature profile is exhibited by
the short time solution. However, the long time
expansion to order £’ gives the trivial solution ¢ = 0.

For the isothermal case a steady state solution exists
which is given by the zero-order long time solution
(22b) corresponding to the exact steady state interface
location predicted by (98). Figure 6 gives the short and
long-time solutions for x = 1, # = 0.1, =05 and ¢
= 0.05. The long-time expansion to order ¢ gives the
quasi-steady solution. This solution becomes invalid
as t — 0. This non-uniformity is associated with the
singularity of g, in equation (23b).

The long-time solid phase temperature solutions for
the insulated and isothermal cases become non-
uniform as v — 0. For the insulated case the non-
uniformity develops in the second-order correction 6,
and is traced to the singularity of ¢,. For the isother-
mal case the non-uniformity is attributed to ¢, and
appears in the zero-order solution 8,. Examination of
the outer expansions shows that to order ¢*'? the
solutions are independent of «, § and ¢;. The effect of
these parameters develops in the second order cor-
rection, 8,, of the short-time solution.

5. CONCLUSION

The two cases considered, the insulated and the
isothermal inner boundary conditions, are found to
exhibit contrasting behavior. This contrast is traced to
the physics of the problem which is fundamentally
different for the two cases.

(i) For the insulated case, except on the short time
scale, the effect of the initial temperature T; is minor
when the sensible heat is small compared to the latent
heat of fusion (¢ < {). Consequently solutions do not
depart markedly from those corresponding to liquids
which are initially at the fusion temperature T,.

”””” T —
8 e
AR B=005
8
7 -05
10
6 _20
g s
Crooy —~——OUTER
4 INNER
3
2
A
O 1 1 -
6 05 10 5 20 25

F1G. 4. Inner and outer expansions of the interface location—isothermal boundary.
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F1G. 5. Inner and outer expansions of the liquid phase
temperature distribution—insulated boundary.
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FiG. 6. Inner and outer expansions of the liquid phase
temperature distribution—isothermal boundary.

(i) For the isothermal case the initial temperature
plays an important role in the solution even if the
sensible heat is small compared to the latent heat of
fusion. Therefore, approximate solutions which as-
sume the initial temperature to be the same as the
fusion temperature are invalid.

(iii) The effect of curvature f on the solution is
minor for the insulated case but significant for the
isothermal case.
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SOLUTIONS DE PERTURBATION POUR LA FUSION OU LA SOLIDIFICATION DANS
DES REGIONS ANNULAIRES INITIALIMENT A UNE TEMPERATURE DIFFERENTE DE
CELLE DE FUSION

Résumé—On ¢étudie la solidification centripéte d’un liquide dans un espace annulaire initialement a une
température différente de celle de la fusion. La surface cylindrique externe est maintenue 4 une tem-
pérature au dessous de celle de solidification que la surface cylindrique interne est soit isolée, soit d
température constante. On obtient de nouvelles solutions de perturbation pour la distribution de tem-
pérature et le déplacement de Pinterface. Le paramétre de perturbation

_ (T -T°

£

est le rapport de la chaleur sensible de la phase solide 4 la chaleur latente de fusion. La non-uniformité
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des solutions 4 longue échelle de temps est traitée en construisant des développements internes d petite
échelle de temps. Les deux solutions sont éprouvées en utilisant la théorie asymptotique. Les solutions
pour le cas d’isolation ne se démarquent pas fortement, excepté pour les temps courts, des solutions
correspondantes pour des liquides initialement 4 la température de fusion 77. Par contre, les solutions
relatives a 1a limite interne isotherme différent nettement de celles obtenues pour une température initiale
égale 4 T'. Ceci est vrai méme si la chaleur sensible est petite par rapport 4 la chaleur latente de fusion.
La courbure joue un réle mineur dans le déplacement de I'interface dans le cas de I'isolation tandis que
son effet est dramatique dans le cas isotherme.

STORUNGSLOSUNGEN FUR SCHMELZEN ODER GEFRIEREN IN
KREISRINGGEBIETEN, DIE SICH ANFANGS NICHT AUF
SCHMELZTEMPERATUR BEFINDEN

Zusammenfassung— Die Arbeit behandelt den inneren Erstarrungsvorgang von Fliissigkeit in einem Kreisring-
gebiet, das anfangs nicht die Schmelztemperatur hat. Die duflere Zylinderoberfliche wird unterhalb der
Erstarrungstemperatur gehalten, wiahrend der innere zylindrische Rand entweder als isoliert oder auf konstanter
Temperatur befindlich angenommen wird. Fiir die Temperaturverteilung und die Bewegung der Phasengrenze
wurden neue Storungsldsungen gefunden. Der Storungsparameter

e(Tr—To)

L
ist das Verhaltnis der fiihlbaren Warme der festen Phase zur latenten Schmelzwdrme. Die Ungleichformigkeit
der Langzeit-Losungen wird durch Reihenentwicklung im Kurzzeit-Bereich behoben. Die beiden Losungen
werden mittels der Asymtoten-Theorie ineinander iiberfiihrt. Die Losungen fiir den isolierten Fall unterscheiden
sich nicht deutlich—ausgenommen im Kurzzeit-Bereich—von den entsprechenden Ldsungen fiir Flissigkeiten,
die sich anfangs auf der Schmelztemperatur T, befinden. Im Gegensatz dazu unterscheiden sich die Losungen
fiir die isotherme innere Berandung wesentlich von denen mit einer Anfangstemperatur von T;. Das trifft sogar
noch zu, wenn die fithlbare Wirme klein im Vergleich zur latenten Schmelzwirme ist. In dhnlicher Weise
spielt die Krimmung bei der Bewegung der Phasengrenze im isolierten Fall nur eine untergeordnete Rolle,
wiahrend ihr Einflufl im isothermen Fall duflerst stark ist.

PEIIEHUE METOJIOM BO3MYUHIEHUN 3AJAYU O TLTABJIEHUU WJIU
3ATBEPJAEBAHMUM B KOJILLIEBBIX 30HAX C HAYAJIbBHOW TEMIIEPATYPOM,
OTJIMYHON OT TEMIIEPATYPHI TJIABJIEHUA

Annoranms — PaccMatpuBaeTcs 3aTBEpAEBAHHE XHUIKOCTH B KOJBLEBOM NPOCTPAHCTBE C HAYaNbHOI
TEMIepaTypoif, OTJIMYHOH OT TeMNepaTypbl fIaBJIEHHs, Ha4yMHAlOLleecs BO BHelIHeH oOnacTu.
BHeluHsAsS [MTOBEPXHOCTh LMAWHAPA MOAJEPXKHABAETCA NPH TeMNepaType HIDKE TeMIepaTypbl 3aMep-
3auus. Tlpeanonaraercs, YTo BHYTPEHHSAA NOBEPXHOCTb NGO W30MMpPOBaHa, MHOO MOANEpKUBAETCH
NpY NOCTOSHHON TemrepaType. MeTOIOM BO3MYLUEHHH NOJIyYeHbl pacnpelefieHie TemMrnepaTypsl 1
3aKOH ABWXXEHMS rpaHKlibl pasznena. [lapaMeTpoM BO3MYLLEHHI,

C\( Tf - Ta)
——————L ’

SABJIAETCA OTHOLLECHHE TEIIOCOAEPKAHUA TBepAOoH (a3bl K CKpbiToi TerutoTe niasyeHus. Heonno-
POIHOCTL pEUICHMH MO [IJMHHOBPEMEHHOM UIKaie pPaccCMaTpPUBAETCSt C MOMOILBIO BHYTPEHHETO
pa3noXEHUs MO KOPOTKOBPEMEHHOW luxane. DTH pelleHHs CIUMBAIOTCH € MOMOILLbLIO aCHMITOTH-
yeckoil Teopuu. B criiyyae W30MMPOBAHHOW BHYTpeHHe! NMOBEPXHOCTH B pelIEHHAX He HalmronaeTcs
3aMETHBIX OTK/IOHEHHH (3a HCKIIOYEHHEM peLIeHMi MO KOPOTKOBPEMEHHOH ILlKane) OT COOTBET-
CTBYIOLLMX PEUICHHH Ui XUIKOCTER C HayalbHON TeMNepaTypoil, paBHOW TeMriepaType MIIaBjeHHs
T;. Pewenus e 05 H30TEPMHUYECKON BHYTPEHHEN IPaHULIbI 3HAYUTEILHO OTIHYAIOTCS OT COOTBET-
CTBYIOLUMX pELIEHMH C HAyaidbHOW TemrepaTypoil, paBHOW TemmepaType nnabiaeHus Ty. IDTO
pacxoxneHue HabmoaaeTcs Aaxe B TOM Ciiyyae, KOTa TErIoCOAep)KaHUe HEBEHKO MO CPaBHEHHIO
CO CKPBITOM TEMIOTON MIIaBNEHHs. AHANIOTHYHBIM 06pa3oM, KpHBH3HA OKa3biBa€T HE3HAYMTE/IbLHOE
BIMSHUE Ha NepeMelLieH e TPaHyubl pa3aena (a3 B ciiy4ae H30JMPOBaHHOW BHYTPEHHEH NOBEPXHOCTH,
TOra KaK B Clly4ae M30TEPMHYECKONH MOBEPXHOCTH €€ BIWSHHE BECbMa CYLIECTBEHHO.



